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Abstract: - In large and complex systems it is often very difficult to find exact solutions to the Linear 
Programming problems with the standard techniques, since the necessary data cannot be easily determined 
precisely and therefore estimates of them are used in practice. Consequently, fuzzy techniques have been 
developed for achieving better results.  In this work we introduce a simple method for solving Fuzzy 
Linear Programming problems with the help of Triangular Fuzzy Numbers and we apply it for solving 
business problems. 
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1 Introduction 
Linear Programming (LP) is a technique for the 
optimization (maximization or minimization) of a 
linear objective function subject to linear equality 
and inequality constraints. The feasible region of a 
LP problem is a convex polytope, which is a 
generalization of the three-dimensional polyhedron 
in the n-dimensional real space Rn, where n is an 
integer, n   2.   
    A LP algorithm determines a point of the LP 
polytope, where the objective function takes its 
optimal value, if such a point exists. In 1947 George 
B. Dantzic invented the SIMPLEX algorithm [1], 
which has efficiently tackled the LP problem in 
most cases. Further, in 1948 Dantzic, adopting a 
conjecture of John von Neuman who worked on an 
equivalent problem in Game Theory, presented the 
theory of duality for LP in its typical form [2]. 
According to this theory every LP problem has a 
dual problem the optimal solution of which, if there 
exists, provides an optimal solution of the original 
problem.  For general facts about the SIMPLEX 
algorithm we refer to Chapters 3 - 5 of [3]. 
    LP, apart from mathematics, is widely used 
nowadays in business and economics, in several 
engineering problems, in Operations Research, etc. 
Frequently in practical applications many LP 
problems involve more than 100 and sometimes 
more than 1000 decision variables. In such cases the 
use of computer software is necessary for the 

solution of the problems. An important advantage of 
the SIMPLEX method is that it can be easily 
adapted to a computer program. A variety of such 
programs is nowadays available for commercial and 
academic use, like the classical LINDO, AMPL, 
CPLEX, MPL, PULP, GuRoBi, etc. Some of them 
adopt the traditional excel solver approach, while 
others use modelling tactics to unravel complex LP 
problems.   
    However, in large and complex systems, like the 
socio-economic, the biological ones, etc. ., it is often 
very difficult to solve accurately the LP problems 
with the standard techniques, since the necessary 
data cannot be easily determined precisely and 
therefore estimates of them are used in practice. The 
reason for this is that such kind of systems usually 
involve many different and constantly changing 
factors the relationships among which are 
indeterminate, making their operation mechanisms 
to be not clear. In order to obtain good results in 
such cases one may apply techniques of Fuzzy LP 

(FLP); e.g. see [4, 5], etc. Computer software is also 
available for FLP, like the MATLAB’s fuzzy logic 
package, the National Instrument’s fuzzy toolkit, the 
Jana’s JfuzzyLogic implementation, etc.   

    In the present article we introduce a simple 
method for solving FLP problems with the help of 
Triangular Fuzzy Numbers (TFNs) and we apply it 
for solving business problems.  
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The rest of the article is formulated as follows: In 
Section 2 the necessary background information 
about TFNs is presented. In Section 3 our method 
for solving FLP problems is developed and is 
applied in Section 4 for solving business problems. 
The article closes with the final conclusions, which 
are presented in Section 5.    
 

2 Triangular Fuzzy Numbers 
The reader is considered to be familiar with the 
basics of the theory of FS and of TFNs (e.g. see [6], 
Chapters 4 and 7).  
The following theorem helps the ranking of TFNs: 
   1. Theorem: The coordinates (x, y) of the  center 
of gravity (COG) of the graph of the TFN (a, b, c), 
with a, b, c in R, a<b<c, are   calculated by the 

formulas x = a+b+c
3

, y = 1
3

.  

    Proof: The graph of the TFN (a, b, c) is the 
triangle ABC of Figure 1, with A (a, 0), B(b, 1) and 
C (c, 0).  

 

Figure 1: Graph and COG of the TFN (a, b, c) 

    The COG, say G, of the triangle ABC is the 
intersection point of its medians. Therefore, the 
proof of the Theorem is easily obtained by 
calculating the equations of the medians AN and 
BM and by solving their linear system.  
    For ranking the TFNs, we define (under the light 
of Theorem 1) the ranking function, say r, of a TFN 
A {α, b, c) by 

r(A) = a+b+c (1)
3

. 

  

3 Fuzzy Linear Programming 
The general form of a FLP problem is the following: 
Maximize (or minimize) the linear expression  
F = A1x1 + A2x2 +….+ Anxn subject to constraints of 

the form  xj   0, Ai1x1+ Ai2x2 +…..+ Ainxn ( )  Bi, 
where i = 1, 2, …, m ,  j = 1, 2,,,, n and Aj, Aij, Bi 
are FNs. 
    Here a new method is proposed for solving FLP 
problems with coefficients TFNs. We start with the 
following definition: 

    2. Definition: The degree of fuzziness (DoF) of a 
TFN A = (a, b, c) is defined to be the real number 
D=c-a. We write then DoF (A) = D. 
Then we have:  
    3. Theorem: Let A(a, b, c) be a TFN with 
DoF(A) = D and r(A) = R. Then A can be written as 

(a, 3R-2a-D, a + D), with R - 
2D
3

<a< R - 
D
3

. 

    Proof: By Definition 2 we have that c = α + D.  

Therefore, r(A) = a+b+c
3

= 2a+b+D
3

= R, which gives 

that b = 3R-2a-D. Consequently we have that  
a<3R-2a-D<a+D. The left side of the last inequality 

implies that 3a<3R-D, or a<R-
D
3

. Also its right 

side implies that -3α<2D-3R, or a>R-
2D
3

, which 

completes the proof. 
    The proposed in this work method for solving a 
FLP problem with coefficients TFNs involves the 
following steps: 

 Ranking of the TFNs Aj, Aij and Bi. 
 Solution of the obtained by the previous 

step ordinary LP problem with the standard 
theory. 

 Conversion of the values of the decision 
variables in the optimal solution of the 
ordinary LP problem to TFNs with the 
desired DoF. 

    The last step, although it could be omitted, is 
useful in problems of fuzzy structure, where a fuzzy 
expression of their solution is often preferable than 
the crisp one.  
 
4. Applications to Business Problems 
Recently researchers have used machine learning 
techniques to develop through the Internet a new 
generation of web-based smart learning systems 

(SLS) for various educational tasks. A SLS is a 
knowledge-based software used for learning and 
acting as an intelligent tutor in real teaching and 
training situations. Such systems have the ability 
of reasoning and of providing inferences and 
recommendations by using heuristic, interactive 
and symbolic processing and by producing results 
from the big data analytics ([7], Section 4). The 
successive phases for developing a SLS are: 

 Construction of the knowledge base, 
involving collection, acquisition and 
representation of the required knowledge.  

 Selection of the suitable reasoning and 
inference methodology, e.g. commonsense 
reasoning, model-based, qualitative, 
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causal, geometric, probabilistic or fuzzy 
reasoning, etc. 

 Selection of intelligent authoring shells 
(computer software), which allow the 
course instructor to easily enter the 
knowledge domain without requiring 
computer programming skills. Those shells 
facilitate also the entry of 
examples/exercises including problem 
statements, solution steps and explanations 
and the integration of suitably developed by 
the specialists multimedia course wear. 

The next application refers to the production of 
SLS.  
    4. Example: A software company produces two 
types of SLS. It has been estimated that the 
production of a SLS of type 1 needs 2 - 3 working 
months (w.m.) for the construction of the 
knowledge base, 2.5 - 3.5 w. m. for the selection of 
the suitable reasoning and inference methodology 
and 0.75 - 1.25 w. m. for the choice of the proper 
intelligent authoring shells. Also, the production of 
a SLS of type 2 needs 0.8 - 1.2, 2 – 4 and 1.5 - 2.5 
w. m. respectively, for each of the above 
procedures. According to the company’s existing 
number of specialized staff, at most 20 w. m. per 
year can be spent for the construction of the 
knowledge base, at most 30 w. m. for the selection 
of the reasoning and inference methodology and at 
most 18 w. m for the selection of the intelligent 
authoring shells. If the net profit from the sale of a 
SLS of type 1 is between 2.7 and 3.3 hundred 
thousand euros and of a SLS of type 2 is between 
3.8 and 4.2 hundred thousand euros1, find how many 
SLS’s of type 1 and of type 2 should be produced 
per year to maximize the company’s total profit. 
(Express the problem’s optimal solution in form of 
TFNs with DoF equal to 1).    
    Solution: Let x1 and x2 be the quantities of SLS 
of type 1 and type 2 respectively to be produced per 
year.  We introduce the required TFNs with the help 

of the problem’s data in the form (a, 
a+b

2
, b); for 

example the required w. m. for the construction of 
the knowledge base of the SLS of type 1 is 
represented by the TFN (2, 2.5, 3), etc.  
    Then, the problem is mathematically formulated 
as follows:  
    Maximize F = (2.7, 3, 3.3)x1 + (3.8, 4, 4.2)x2, 

                                                 

1 The profit depends upon the change of prices in the market, 
the salaries of the company’s staff, etc. 

subject to  x1, x2   0 and 
 (2, 2.5, 3)x1 + (0.8, 1, 1.2]x2   (19, 20, 21) 
(2.5, 3, 3.5)x1 + (2, 3, 4)x2   (29, 30, 31) 
(0.75, 1, 1.25)x1 + (1.5, 2, 2.5)x2   (15, 16, 17). 

    The ranking of the TFNs involved leads to the 
following LP maximization problem of canonical 

form:  

    Maximize f(x1, x2) = 3x1 + 4x2, subject to x1, x2   
0 and 

2.5x1 + x2  20 
3x1 + 3x2   30 
x1 + 2x2   16 

    Adding the slack variables s1, s2, s3 for converting 
the last three inequalities to equations one forms the 
problem’s first SIMPLEX matrix, which 
corresponds to the feasible solution f(0, 0) = 0, as 
follows: 
 

1 2 1 2 3

1

2

3

x x s s s | Const.

2.5 1 1 0 0 | 20 s
3 3 0 1 0 | 30 s
1 2 0 0 1 | 16 s

|
3 4 0 0 0 | 0 f(0,0)

 
 
      

 
 
 

 
 
 
      

    

  

 
    Denote by L1, L2, L3, L4 the rows of the above 
matrix, the fourth one being the net evaluation row.  
Since -4 is the smaller (negative) number of the net 

evaluation row and 
16 30 20
2 3 1
  , the pivot 

element 2 lies in the intersection of the third row and 
second column Therefore, applying the linear 

transformations L3  
1
2

L3 = L΄3 and L1  L1 – 

L΄3, L2  L2 – 3L΄3, L4  L4 + 4L΄3, one obtains 
the second SIMPLEX matrix, which corresponds to 
the feasible solution f(0, 8) = 32 .  
   Repeating the same process (pivoting) one finds 
the third SIMPLEX matrix, which is shown in the 
next page. Since there is no negative index in the net 
evaluation row, this is the last SIMPLEX matrix. 
Therefore f(4, 6) = 36 is the optimal solution 
maximizing the objective function. Further, since 
both the decision variables x1 and x2 are basic 
variables, i.e. they both participate in the optimal 
solution, the solution is unique. 
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1 2 1 2 3

1

1

2

x x s s s | Const.

4 30 0 1 | 4 s
3 2

21 0 0 1 | 4 x
3
10 1 0 1 | 6 x
3

|
20 0 0 1 | 36 f(4,6)
3

 
 
      

 
 

   
 
 

 
 
 
  
 
 
     

 
 

 
 

 

     
    Converting, with the help of Theorem 3, the 
values of the decision variables of the above 
solution to TFNs  with DoF equal to 1, one finds 

that x1 = (a, 11-2a, a+1] with 
10 11a
3 3
   and  

x2 = (a, 17-2a, a+1) with. 
16 17a
3 3
  .       

    Therefore a fuzzy expression of the optimal 
solution states that the company’s maximal profit 
corresponds to a production between a and a+1 SLS 
of type 1, with 3.33 a 3.67  , and between a and 
a+1 SLS of type 2 with 5.33 < a < 5.67.  
    However, taking for example a = 3.5 for x and a = 
5.5 for x2 and considering the extreme in this case 
values of the daily construction of 4.5 SLS of type 1 
and 6.5 SLS of type 2, one finds that 33 in total w. 
m. are needed for the selection of the reasoning and 
inference methodology, whereas the maximum 
available w. m. are only 30. In other words, a fuzzy 
expression of the solution does not guarantee that all 
the values of the decision variables within the 
boundaries of the corresponding TFNs are feasible 
solutions. 
    5. Example: A social network under construction 
is planning to use three types of hardware, say F1, F2 
and F3, for its function, their cost varying between 
38 - 42, 17 - 23 and 55 - 65 hundred euros per unit 
respectively. It has been estimated that each unit of 
F1 has the capacity to satisfy the needs of about 1.5 - 
2.5 hundred male and of about 4 - 6 hundred female 
visitors of the network per day, each unit of F2 of 
about 3.2 - 4.8 hundred male and 0.6 – 1.4 hundred 
female visitors and each unit of F3 of about 1.7 – 2.3 
hundred male and 0.8 – 1.2 hundred female visitors 
per day.  It is expected that the network will have at 
least 24 hundred male and 8 hundred female visitors 
per day. How many units from each type should be 
ordered to minimize the cost of the hardware? 

    Solution: Let x1, x2 and x3 respectively be the 
units of the software F1, F2 and F3 that should be 
ordered. Then, using TFNs the problem’s 
mathematical model could be formulated as follows:  

    Minimize  
F=(38, 40, 42)x1 + (17, 20, 23)x2 + (55, 60, 65)x3,  
subject to x1, x2 , x3  0 and 
(1.5, 2, 2.5)x1 + (3.2, 4, 4.8)x2 + (1.7, 2,  2.3)x3 

 (22, 24, 26) 
(4, 5, 6)x1 + (0.6, 1, 1.4)x2 + [0.8, 1, 1.2]x3 

 (6, 8, 10) 

    The ranking of the TFNs leads to the following 
LP minimization problem of canonical form: 

    Minimize f(x1, x2, x2) = 40x1 + 20x2 + 60x3, 
subject to  x1, x2 , x3  0  and 2x1+ 4x2+ 2x3 24,  
5x1 + x2 + x3     8 
    The dual of the above problem is the following:  
Maximize g(z1, z2) = 24z1 + 8z2 subject to z1, z2   0 
and 2z1 + 5z2  40, 4z1 + z2    20, 2z1 + z2    60 

    Working similarly with Example 7 it is 
straightforward to check that the last SIMPLEX 
matrix of the dual problem is the following: 
 

1 2 1 2 3

2

1

3

z z s s s | Const.

2 1 200 1 0 | z
9 9 3
1 5 101 0 0 | z

18 18 3
1 4 1400 0 1 | s
9 9 3

|
4 52 400 10 200 0 0 | ( , )
9 9 3 3 3

g

 
 
      
 
 

 
 
 

 
 
 
   
 
 
     
 
 

 
 

 

   Therefore the solution of the corresponding 

minimization problem is f min = f(

4
9 ,

52
9 , 0) = 

400
3 .  

   In other words, the minimal cost of the hardware 

is 

400
3   133 thousand euros and will be reached 

by ordering 

4
9   0.44 units of the hardware F1,  

52
9   5.77 units of the hardware F2 and no units 

from the hardware F3. 
    Working similarly as in the previous example one 
could obtain a fuzzy expression of the optimal 
solution in form of TFNs with the desirable DoF.   
    6. Example: A factory produces the goods T1, T2 
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and T3 using the materials C, S and P. The quantities 
of the materials needed for producing a unit of each 
of the three goods are not constant depending upon 
their quality. The required quantities of the materials 
are depicted, in the form of TFNs, in Table1: 

Table 1: Required quantities of the materials 

 T1 T2 T3 
C (1, 2, 3) (5, 6, 7) (0.5, 1, 1.5) 
S (3, 4, 5) (2, 3, 4) (1.5, 2, 2.5) 
P (1.8, 2,2.2) (0.7, 1, 1.3) (0.8, 1, 1.2] 

     
    The factory’s profit from the sale of a unit of T1 is 
3 thousand euros, of a unit of T3 is 2 thousand euros, 
whereas from the sale of a unit of T2, the production 
of which becomes necessary for marketing reasons, 
there is a loss of 1 thousand euros. 
    At the end of a day the stock of the material C is 
high, so that at least 200 units of it must be used the 
next day, while the stock of S is 150 units. Further, 
there exists a stock of 100 units of expiring material 
P all of which must be used the next day. Under the 
above conditions find with DoF equal to 0.2 which 
must be the next day’s production of the three goods 
in order to maximize the factory’s profit. 
    Solution: Let x1, x2 and x3 be the units of the 
goods T1, T2 and T3 respectively. Then the problem 
is mathematically formulated as follows:   

    Maximize F = 3x1 - x2 + 2x3, subject to x1, x2 , 
x3  0 and  
(1,2,3)x1+(5,6,7)x2+(0.5,1,1.5)x3 (199,200,201) 
(3,4,5)x1+(2,3,4)x2+(1.5,2, 2.5)x3 (149,150,151) 
(0.8,1,1.2)x1+(0.7,1,1.3)x2+(0.8,1,1.2)x3 

=(99,100,101) 

    The ranking of the TFNs leads to the following 
LP maximization problem of general form 2: 

    Maximize f(x1, x2, x2) = 3x1 - x2 + 2x3, subject to 
x1,x2 ,x3  0 and  
2x1 + 6x2+ x3   200 
4x1 + 3x2 + 2x3   150 
2x1 + x2 + x3  = 100 

    Adding the surplus variable s1 to the first 
inequality, the slack variable s2 to the second one 
and the artificial variables t1 and t2 to the first 
inequality and the last equation one turns all the 
special constraints to equations. Next, adding by 

                                                 

2  It is recalled that in a LP problem of general form there exists 
at least a constraint having the inverse sign of inequality (here 
 ), while there could also exist constraints with the sign of 
equality.   

members the two equations containing the artificial 
variables, one forms the problem’s first generalized 
SIMPLEX matrix as follows:  
 

1 2 3 1 2 1 2

1

2

2

1 2

x x x s s t t | Const.

2 6 1 1 0 1 0 | 200 t
4 3 2 0 1 0 0 | 150 s
2 1 3 0 0 0 1 | 100 t

3 1 2 0 0 0 0 | 0 f(0,0,0)

4 7 4 1 0 1 1 | t t 300

 
 
        

 
  
 

 
 
 
         

   
 
         

    

  

 
    The rows of the artificial variables t1 and t2 are 
the, so called, anonymous rows of the above matrix. 
For the pivoting process, one considers all the 
columns containing at least one positive number in 
the anonymous rows, and he chooses the column 
having the greatest positive number in the last row 
(i.e. the row of t1+t2), which is the column of x2.  
    Then, since 200 150 100

6 3 1
  , the pivot element 6 

lies in the first row. Therefore, applying the proper 
linear transformations among the rows of the matrix 
one forms the following second generalized 
SIMPLEX matrix: 
 

1 2 3 1 2 1 2

2

2

2

1 2

x x x s s t t | Const.

1 1 1 1 1001 0 0 | x
3 6 6 6 3

3 1 13 0 1 0 | 50 s
2 2 2

5 17 1 1 2000 0 1 | t
3 6 6 6 3

10 13 1 1 100 1000 0 0 | f(0, ,0)
3 6 6 6 3 3

5 17 1 1 2000 0 1 | =t t
3 6 6 6 3

 
 
        

 
 

  
 
 

 
 
 
 
 
         
 
 
     
 
        


  
 





 

 
    The pivot element 17

6
 lies now in the intersection 

of the column of x3 and the row of t2 and the third 
generalized SIMPLEX matrix is shown in the next 
page. 
   Therefore, omitting in this matrix the last row and 
the columns of the artificial variables one obtains 
the problem’s first canonical SIMPLEX matrix 
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1 2 3 1 2 1 2

2

2

3

1 2

x x x s s t t | Const.

4 3 3 1 5001 0 0 | x
17 17 17 17 17
36 7 7 9 2500 0 1 | s
17 17 17 17 17
10 1 1 6 4000 1 0 | x
17 17 17 17 17

35 5 5 13 300 500 4000 0 0 | f(0, , )
17 17 17 17 17 17 17

0 0 0 0 0 0 0 | 0=t t



        




 



  


   


        






        





















 
  

    Next, continuing the process in the standard way 
one finally reaches the optimal solution  
f max = f(125 250 175, ,

18 9 9
) = 575

18
. 

    Converting the values x1=125
18

6.94,  

x2= 250
9

27.78, x3=175
9

19.44 to TFNs with DoF 

equal to 0.2 one finds with the help of Theorem 5 
that x1   (a, 20.63-2a, a+0.2), with 6.81 <a<6.87,  
x2 (a, 83.13-2a, a+0.2), with 27.64 < a <27.71 and 
x3   (a, 58.13-2a, a+0.2), with 19.31 < a <19.37.  
Taking for example the values of a equal to 6.85, 
27.7 and 19.35 respectively one finds that  
x1 (6.85, 6.93, 7.05), x2   (27.7, 27.99, 28.19), 
and x3   (19.35, 19.43, 19.55), which are very close 
to the values of the decision variables in the crisp 
optimal solution.  
    In general, the smaller is the chosen DoF of the 
TFNs involved in the problem’s optimal solution, 
the more creditable is the corresponding fuzzy 
expression of this solution. 
 
5. Conclusion 
A new technique was developed in this work for 
solving FLP problems with the help of TFNs and 
examples were presented illustrating its applicability 
to business problems. In LP problems with fuzzy 
structure a fuzzy expression of their solution is often 
preferable. This was achieved in the present work 
by converting the values of the decision variables in 
the optimal solution of the obtained ordinary LP 
problem to TFNs with the desired DoF.   
    A technique similar to that applied here for 
solving FLP problems can be used for solving 
systems of equations with fuzzy coefficients [8], as 
well as for solving LP problems and systems of 
equations with grey coefficients [9]. For interesting 
applications on fuzzy control the reader may also 
look at [10, 11]. 
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